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The scaling behavior of the SO(3) irreducible amplitudes d'n(r) of velocity
structure tensors is numerically examined for Navier-Stokes turbulence. Here,
l characterizes the irreducible representation by the index of the corresponding
Legendre polynomial, and n denotes the tensorial rank, i.e., the order of the
moment. For moments of different order n but with the same representation
index l extended self-similarity (ESS) towards large scales is found. Intermit-
tency seems to increase with l. We estimate that a crossover behavior between
different inertial subrange scaling regimes in the longitudinal and transversal
structure functions will hardly be detectable for achievable Reynolds numbers.

KEYWORDS: Fully developed turbulence; SO(3) invariants of velocity corre-
lations; scaling exponents; intermittency; longitudinal vs. transversal velocity
structure functions.

The most fundamental objects to analyze the structure of turbulent velocity
fields u(x, t) are the tensorial moments of the velocity differences vi,(r; x, t)
= ui(x + r, t) — ui(X, t), averaged over time t or/and position x, considered
as functions of scale r,
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If the eddy size r=\r\ is in the inertial subrange (ISR), i.e., n « r « L ,
algebraic scaling of the moments is expected. Here, n is the inner
(Kolmogorov) scale and L the external length scale.(1) If the turbulent flow

1 Fachbereich Physik der Universitat Marburg, D-35032 Marburg, Germany; e-mail:
grossmann_s@physik.uni-marburg.de, reeh@mailer.uni-marburg.de.

2 Present address; University of Twente, Department of Applied Physics, P.O. Box 217,
7500 AE Enschede, The Netherlands; e-mail: lohse@tn.utwente.nl.

715

0022-4715/98/1100-0715J15.00/0 © 1998 Plenum Publishing Corporation



The representation label l runs through O<l<n with the same parity as n,
if statistical reflection symmetry of the turbulent flow field is guaranteed*8';
Pi is the Legendre polynomial. The amplitude of the unity representation,
d0

n(r), is already part of the conventional set of structure functions, since
d0

n(r) oc Z>f (r).
For the second and fourth order structure tensors, the amplitudes

d'2(r) and d'4(r) are linear combinations of the longitudinal, transversal,
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field can be considered as statistically isotropic (or close to), one better
uses rotational invariants instead of the tensorial components, in order to
cope with the multitude of scaling exponents. The most commonly used
invariants are the structure functions of the longitudinal velocity compo-
nent t i = v r ° and the transversal velocity v r = v — vLr°; here, r° denote
the unit vector in r direction. We denote these structure functions as

each is assumed to scale in the ISR with the corresponding exponents ££
and eT

n. A third convenient structure function is the nth order moment of
the modulus of the eddy velocity difference v(r; x, t) which again is assumed
to scale as

Traditionally, it was believed that all three scaling exponents are the same,
C = C^ = C£ = Cj- But recent advances in experimental technology (2–5) and
computational power and technique(6, 7) raised increasing doubts if this is
true for general moments of order n, as it is for the most often considered
2nd order structure function, n = 2, where the condition of incom-
pressibility enforces Z>£ oc D% oc Df oc rf2. For general n, it was found in
several experiments and simulations that the degree of intermittency (i.e.,
the deviations of the scaling exponents from the classical value Cn = n/3) is
considerably larger in the transversal moments compared to the longitudinal
ones; for a summary of the results see Table 1 of ref. 7.

In a recent paper, L'vov, Podivilov, and Procaccia(8) suggested that it
was not the longitudinal or the transversal structure functions that obey
clean algebraic scaling, but rather the amplitudes of the moment tensor
Eq. (1) decomposed into the irreducible representations of the rotation
group SO(3),
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and modulus structure functions. We follow L'vov et al.'s definitions(8)

ao = d%, a2 = d\, co = dl, c2 = d\, c4 = d\ obtaining

On the rhs also other ways of representing the n-rank velocity corre-
lation tensor can alternatively be given, using e.g. DT

2 in (6) or mixed
transversal/longitudinal moments in (7) as done in Eq. (13.81) of ref. 1 or
in ref. 9 which uses D11 =£>!•, Z)22 = Z)f/2,Z)Ii11 = <t)<>=£>J,£>I122 = <i>2|,2>,
and .£>2222 = <y2> = 3-D2233 = 3£>J/8, where the 1-axis has been put in the
longitudinal direction parallel to r. For these structure functions we obtain

The point of L'vov et al. is that the invariants a1, cl on the lhs of
Eqs. (6), (7), and (8) are distinguished because the dl

n(r) are the amplitudes
of the structure tensor for its decomposition into the components of the
irreducible representations of the rotational symmetry group SO(3).

In this paper we present the scaling properties of the fourth order
moments d'4(r) from a full numerical simulation of the Navier-Stokes equa-
tion on a 963 grid with periodic boundary conditions. The numerical tur-
bulence is forced on the largest scales, the averaging time is about 120 large
eddy turnovers, and the Taylor-Reynolds number is Rex = 110. We also
performed a simulation with Rex = 75 which lead to the same results. The
isotropy of the flows has carefully been checked; for details of the simula-
tions we refer to ref. 7.



718 Grossmann, Lohse, and Reeh

Fig. 1. Fourth order structure functions c0, 2, 4(r) as functions of r. The inset shows c0, 2, 4(r)
(top to bottom) as they follow from the Batchelor parametrization (9) and Eqs. (2) of ref. 9.
The different magnitudes and the distinct transitional behavior of the different irreducible
representations can be recognized. Note that the local slope of log10 c4(r) vs log10 r around the
transition is not monotonous. By assumption the ISR scaling exponents are the same.

The second order moments all asymptotically scale the same because
of incompressibility. Assuming classical scaling C2 = 2/3 one obtains D2 =
4Df/3 and ao= 11a2 = D^ /3. In Fig. 1 we give the fourth order structure
functions c0, 2, 4(r). As tested for smaller Reynolds numbers and longer
averaging times, the wiggle in c4(r) at large r is not statistically safe. It
seems that very long averaging times are necessary for moments with large
l to converge at large scales.3 As expected for this low Rex, the scaling
properties of these structure functions c0, 2, 4(r) is very poor, because there
is not yet a well developed ISR. There is analytical behavior oc r4 in the
viscous subrange (VSR) followed by a transition and leveling off in the
inertial and stirring subrange around r~L. What can be said, however, is
that with increasing l (i) the magnitude of Cl(r) decreases and (ii) the
degree of intermittency seems to increase, C4 < C4 < C° < 4/3. The reason for
(i) is that c0 is a sum of positive definite structure functions, whereas c2 and
the more cA are differences thereof, similar to a2 = (D22 - D11),,)/3 which also
is much smaller than ao = Dn +2D22. The reason for (ii) presumably is
that larger l in (5) means the probing of smaller scale structures which are
traditionally associated with stronger intermittency.

Fortunately, the extended self similarity method (ESS,(10)) allows for
more quantitative statements. Here, we focus on the scaling of the fourth
order structure functions vs second order ones. More specifically, to visualize

3 Chen el al.(6) noted that transverse structure functions are more difficult to converge.
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Fig. 2. Compensated ESS plots for different space directions of fourth vs second order struc-
ture functions, giving the ISR scaling exponent pi = (fi - 2C'2)/c2. The plot c2/a

2
2 vs a2 displays

a distinct bump around 35n for all three space directions, though it is slightly differently
developed in strength, possibly because of the unavoidable anisotropy in the forcing, possibly
because of the too short averaging time (Fig. 2b, upper). Convergence is much less a problem
in the ESS plot co/al vs a0 (Fig. 2b, lower) and consequently also in the ESS plots of the
longitudinal and transversal structure functions where the rank zero contributions dominate
(Fig. 2a).

the deviations from classical scaling we calculate compensated ESS plots
D'J{D'2)

2 vs D'2, i = L, T,M, and d'J(d'2)
2 vs d'2, 1 = 0,2, see Fig. 2. For

1 = 0 we find ESS scaling from r~10n up to r ~ L , resembling the ESS
scaling for the longitudinal and transversal structure functions Fig. 2a
which was extensively analyzed in refs. 10 and 11. For 1 = 2 we find ESS
towards large scales r>50n, but no ESS towards smaller scales r<50n.
Instead, there is a bump in the curve c2ja\ vs a2 for r ~ 35n. As this feature
is very unusual, we checked very carefully whether the bump would smooth



« = 2, 4. For the demonstrative calculation to follow we take rc = 10n and
the She-Leveque model(13) values £2 = 0.70, C4 = 1.28. Incompressibility
gives D2(r) = r–3\r

0D^(r)r2dr and via Eq. (6) all other second order
structure functions follow. For the fourth order moments, an analogous
relation does not exist. However, within some closure approximations(9)

(whose nature is controversial), all 4th order structure functions follow
from D^(r), cf. Eq. (2) of ref. 9. We stress that those relations are not
generally true and their consequence that all 4th order structure functions
scale the same is in direct contradiction to our findings and those of others.
However, for the demonstration of transitional effects, for which the dif-
ferent intermittency in the ISR does not matter, Eqs. (2a)-(2c) of ref. 9
could be useful. Employing them we derive an ODE for D1111 =D4

L,

and Eqs. (7)-(8) all other fourth order moments follow. The resulting com-
pensated ESS plots are shown in Fig. 3. Indeed, in the ESS plot c2ja\ vs
a2 a bump occurs at the VSR-ISR transition, similar to what we found in
the numerical simulation. All other shown compensated ESS plots are
dominated by D4

M = ̂ /lc0 and D^ = 3a0, and therefore display ESS, as c0

which can numerically be solved for the given D^{r) of Eq. (9). With ref. 9

for increasing averaging time. This is not the case. It also persists for a dif-
ferent type of large scale forcing and smaller Reynolds number, but much
larger averaging time.

At first sight, the bump was a surprise to us. However, we suggest that
it can be understood as a transition phenomenon from the VSR to the ISR,
similar to the one seen in Fig. 3 of ref. 11. Hitherto, it was not observed in
ESS plots of longitudinal and transversal structure functions as both are
dominated by the rank zero contribution d0

n which does show ESS.
For further support of this interpretation, we parametrize the d°n(r)

within Batchelor's parametrization,(1, 12)
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Fig. 3. Compensated ESS plots following from the Batchelor parametrizations (9) and
Eqs. (2) of ref. 9. The curve c2ja\ vs a2 is the only ESS plot which is not dominated by the
tensors of rank zero and it does show a bump at the VSR-ISR transition. That the ISR scaling
exponent pt is the same for the four curves shown here for demonstrative reasons is a trivial
consequence of the closure assumptions of ref. 9, but does not hold for the real data.

vs a0 does. After the functional shape of the ESS transition from VSR to
ISR in DM

4 vs DM
2 is now believed to be rather universal, it would be worth

while to analyze in various experimental and numerical flows, whether the
first angular contribution, i.e., c2 vs a2, also is somehow universal and thus
displays the type of structure that we found in Fig. 2b.

We now come back to the numerical results and focus on the ESS scaling
exponents of Fig. 2 which we denote by pi- = (£!, — 2(,2)lt,2, i = L, T, M o
1 = 0, 2. The deviation of the pt from zero characterizes the degree of inter-
mittency of the corresponding moment. We find pL = – 0.15, pT = —0.30
and PM = Po= – 0.25, p2= —0.5, again showing that the degree of inter-
mittency is higher in the d'n with larger l. The She-Leveque model value
(with the original She-Leveque parameters adopted to the longitudinal
structure function)(13) for p is p= -0.16.

We checked the possibility of scaling behavior if amplitudes corre-
sponding to different irreducible subspaces are mixed: we do not find ESS
if we plot structure functions d\l{dl

2')
2 vs d'2 with different l=l'.

It will not have escaped the reader's attention that the simultaneous
assumption of pure scaling behavior of both the D^-T-M as well as the
C4

0, 2, 4 is self contradictory if the exponents with different l are different. We
follow L'vov et al.'s argument that the d'n are the more fundamental structure
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functions and (employing Eq. (7) and incompressibility) write the ratios
D4

L,T/(D\'T)2 as a sum of ratios of the d'n,

From our numerics (see Fig. 1) the first term is found to be the leading
order term. It represents the scaling of the modulus structure functions
Eq. (4). In the first (and larger) correction term the approximation
ao^\la2 (resulting from f 2 = 2 / 3 and incompressibility) can be made,
leaving only ratios whose scaling we can determine from the ESS-plots
Fig. 2b; (the c4-term hardly contributes for large r). With that approxima-
tion the qualitative features of Fig. 2a can be understood from Eqs. (13)
and (14): As c 2(r)<0 the c2/a

2
2 correction term to the leading c0/ao term

is negative [positive] for £>£/(£>f)2 [D%/{D%)2], leading to a less steep
[steeper] "apparent" slope for the ESS exponents pL = -0.15 [pT = -0 .30]
of the longitudinal [transversal] structure function compared to the
leading contribution with PO = PM = –0.25. Even the fact that the correc-
tion to po= –0.25 is twice as big for the longitudinal structure function as
for the transversal one can be seen from Eqs. (13) and (14).

Finally, we would like to estimate the Reynolds number for which two
distinct scaling regimes (in r) may be observable in D4

L,T. Therefore, we
plug in the scaling laws

and obtain with the numerical values at r = L, co/al ~ 6 and c2/a2
2= — 100,

We get <x~0.2, C2(/>2-/?0) = § ( - 0 . 5 + 0.25) * - 0 . 1 7 . Note that for
small enough r the second term in (17) may dominate the first one and for
even smaller r the third term will contribute. [In Eq. (16) the situation is
more complicated as the second term has negative sign, but the lhs is
positive definite.] Therefore, in principle Dj/fDf)2 shows several different
scaling regimes. However, it will be very hard to detect these different



regimes as the required span of the Reynolds numbers is too large. In
Eq. (17) the ratio L/r has to be as large as L/r = (2/a)1/0 .17~ 106 for the
second term to overtake the first one. We put r = n and estimate that this
means Re ~ 108. This value would be hard to achieve in today's experimen-
tal or numerical flows, however, note that it strongly depends on the dif-
ference p2 — p0 which can only be measured with limited accuracy in low
Reynolds number numerical simulations. What shall be detectable if L'vov
et al.'s conjecture(8) is right is that the apparent scaling exponents of the
structure functions D^ T{r) or ESS scaling exponents thereof are slightly Re
dependent whereas the scaling exponents of the irreducible objects d'n{r) or
their ESS exponents (the exponents of plots |*/J,(r)| vs |af^(r)|) might well
be universal, i.e., Reynolds number independent.

The main aim of this paper is to initiate measurements of such
exponents as a function of Re up to very large Reynolds numbers(5) to be
able to decide whether the conventional structure functions D^T or the
irreducible structure functions d'n(r) [which we favor because of their larger
symmetry] are the more fundamental objects. We speculate that nature
may have chosen an elegant way out of this decision, namely that in the
large Reynolds number limit the scaling for all structure functions
Df?T-M{r), d'n{r) (for fixed n) may be the same.
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